IGEN: Erasing Achievement Gaps in Doctoral Education

Theodore Hodapp
IGEN Director

APS Director of Project Development
Hispanic American Bachelor Degrees

Source: IPEDS, US Census, and APS
African American Bachelor Degrees

Source: IPEDS, US Census, and APS
Underrepresented Minority (URM) Physics degrees

US Graduate-Age URM population

Source: IPEDS, US Census, and APS

Only ~35 students!
Problem in all Disciplines Bridge Components can Solve

- Comp. Sci.: 91 BS, 374 PhD
- Bio. Sci.: 112 BS, 112 PhD
- Chem.: 203 BS, 63 PhD
- Eng.: 63 BS, 36 PhD
- Math/Stat.: 36 BS, 6 PhD
- Phys.: 16 BS, 6 PhD
- Astro.: 6 BS, 6 PhD
- Geosci.: 16 BS, 6 PhD
NSF INCLUDES

- Future of Work
- Growing Convergence Research
- Harnessing the Data Revolution
- Mid-scale Research Infrastructure
- Navigating the New Arctic
- NSF 2026
- **NSF INCLUDES**
- Quantum Leap
- Understanding the Rules of Life
- Windows on the Universe
Inclusion across the Nation of Communities of Learners of Underrepresented Discoverers in Engineering and Science

Broadening Participation in STEM at scale

• Design and Development Launch Pilots (~68, $300k) (2016, 2017)
• National Alliances (5, up to $10M) (2018)
• Coordination Hub (1) (2018)

INCLUDES RFP example of national objectives that have potential for scaling: “a disciplinary organization launches a major initiative designed to significantly improve the diversity of PhD graduates in that discipline”
Member Institutions
- 143 in 38 states

Partnership Institutions
- 38 in 18 states
 - 31 PhD
 - 7 MS

APS Bridge Program

Member and Partner Institutions

[Map showing the locations of Member and Partnership Institutions across the United States]
Bridge Program Achievements

Bridge Program
All Physics PhDs

✧ 23% Women (20%)
✧ 93% URM (6%)
 - 64% Hispanic
 - 24% African American
 - 5% Native
✧ 87% Retention (60%)

168 Students making progress toward PhDs

– All traditionally excluded

URM PhDs reach same fraction as undergrad degrees

Students

2013 2014 2015 2016 2017 2018

No Longer Pursuing Physics PhD
Placed/Retained
Project Funded

www.IGENetwork.org

©2018, American Physical Society; Email: hodapp@IGENetwork.org
Physics GRE: Impact of Cutoff Scores

The graph shows the fraction of different ethnicities for various cutoff scores. The y-axis represents the fraction, and the x-axis represents the score range from 400 to 1000.

- **Fraction (White)**
 - 0.09 (Black)
 - 0.44 (White)
 - 0.61 (Asian)
 - 0.34 (Hispanic)

The graph indicates that the fraction of Black and Hispanic students decreases significantly below the cutoff scores of 650.
Physics GRE: Impact of Cutoff Scores

Source: ETS

- Fraction (F) at 650: 0.25 (F)
- Fraction (M) at 650: 0.46 (M)

www.IGENetwork.org ©2018, American Physical Society; Email: hodapp@IGENetwork.org
Physics GRE “Correlation” with Grad GPA

$r = 0.24; N = 1686$

“Weak” Correlation
Use of Graduate Record Exam

Are GRE scores (quantitative, verbal, written, or physics subject) used as a minimum cutoff in admissions decisions?
• 32% indicate yes

How are GRE scores (quantitative, verbal, written, and physics subject in particular) being used in the admissions process?
• There is widespread (but not universal) use of GRE cutoffs:
 • “a rough cutoff”
 • “preferable score”
 • “as a first cutoff”
 • “No fixed cutoff, but GRE quantitative should be about 90 percentile or higher.”
 • “No hard cutoff, but used as a first cut in going through applications and GRE scores trump GPA scores in assessing students.”
• Lower NRC-ranked departments were more likely to use cutoff scores
How are considerations of diversity (race/ethnicity, gender) accounted for in admissions decisions, if at all?

• Many programs report little success towards dealing with underrepresentation:

 • “Unlike the male/female situation, we are not very successful in recruiting underrepresented minorities. If we find a candidate, we find a fellowship. The numbers are just not there in our pool.”
• **Bridge:** Increase the fraction of students from underrepresented groups who complete doctoral degrees in the physical sciences to match the levels of undergraduate degrees awarded.

• **Inclusive Practices:** Catalyze the adoption of evidence-based inclusive practices, especially in graduate education, that reduce inequities in doctoral completion for underrepresented groups and benefit all students.

• **Research:** Conduct research and propagate results that distill scalable, effective practices in inclusive graduate education and institutional change within the physical sciences.

• **Transitions:** Establish sustained, cross-sector partnerships within and among critical stakeholders that support the advancement of underrepresented students from undergraduate through professional employment.
IGEN: Project Partners

Major Partners
- American Physical Society
- American Chemical Society
- American Geophysical Union
- American Astronomical Society
- Materials Research Society

Cross-Cutting Hubs
- Inclusive Practices Hub (workshops, training local champions, national facilitators; RIT)
- Research Hub (graduate education; USC)

National Laboratories (CIMER)
- Los Alamos
- Argonne
- Lawrence Livermore
- Brookhaven
- FRIB
- Sandia
- Lawrence Berkeley
- MagLab
- NIST
- JPL
- Adding: FermiLab, INL, …

Private Sector Corporations
- General Atomics
- IBM
- Intel Corporation
- Google
- Adding: Corning, ExxonMobil, …
IGEN: Components

- Application aggregation expanded to all disciplines (chemistry in 2019, rest in 2020)
- Bridge Sites established in chemistry (starting 2019)
- Partnership Institutions established in other disciplines
- Establish and propagate resources and advocates to impact admissions and retention practices
- Developing mentoring materials focused on National Lab environment, but applicable in other areas
- Partnering with CIRTL for faculty development resources
- Research into critical factors impacting success
- Establishing pathways to make professional opportunities available to graduates at National Labs and industry
- Enhancing mentoring of undergraduates into graduate studies
- National advocacy through annual meetings (and other channels)
Questions

This material is based upon work supported by the National Science Foundation under Grant Nos. 1143070, 1641764, 1834540. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.